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A long-standing desire in biogeochemistry is to be abie to examine the
clcling of elements by microorganisms. as the processes are happening
on surfaces of earth and environmental materials. Over the past decade,
physics, engineering, and instrumentation innovations have led to the intro-
duction of srnchrotron radiation-based infrared (IR) spectromicroscopy.
Spatial resolutions of less than 10 micrometers (pm) and photon energies
of less than an electron volt make s\nchrotron IR spectromicroscop) non-
invasive and useful for follo$-in_s lhe course of biogeochemical processes
on complex heterogeneous surfaces of earth and environmental materials.
In this chapter, we will first briefll describe the technology and then present
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L INTRODUCTION

Microorganisms are important agents in the geochemical cycling of ele-
ments. For example, they can change the speciation of metal ions and
organic carbons in soils and sediments by releasing complexing agents
and by enzyrnatically catalyzing reactions (Barker and Banfield, 1996. 1998;
Benzeraraet aL.,2005; Cooper et a\..2005: Edwards et aI.,2000.2001;Ehrlich,
1998, 2000; Emerson and Ghiorse. 1993; Ghiorse and Hirsch, 1979; Jones
et a|.,2003; Kalinowski et aL.,2000. Lajtha and Schlesinger, 1988;Lovley and
Woodward, 1996; Miller et aI.,2004'. Tebo er a\.,1997). They can also modify
the composition of pore fluid and groundwater through controlled mineral
u'eathering and precipitation (Andrejchuk and Klimchouk, 2001; Barker
and Banfield. 1998; Bennett et a1.,2000:Benzerara et at..2002.2005: Cacchio
et a1..2004: Cheah et a\.,2003; Edwards et aL.,2005:Ehrlich, 1994, 1998;Engel
er ul.. 2004: Goodhue er al.. 2005: Joeckel and Clement, 2005; Maurice et al.,
l00l: Mcmahon and Chapelle. 1991: Renaultet a\.,1998; Sanchez-Moralet al.,
2003; Spilde et al., 2005: Welch et al., 2002). Most importantly. they
can transform many environmental pollutants to less toxic species (Aksu,
2005; Francis et a\.,2000, 2004; Lack et a\.,2002: Lovley and phillips, 1992;
Lovley et al., l993a,b; Merroun et al., 2005; Neal el al., 2004a: Osborne
and Ehrlich, 1976; Panak et a1.,2002; Phillips et al., 1995; Suzuki and
Banfield, 2004; Watson and Ellwood, 2003; Watson et a\.,2000; Zouboulis
and Katsoyiannis,2005). with the discovery of diverse microbial communities
thriving in every possible environment (Amend, 2004; Baker and Banfield, 2003;
Balkwill and Ghiorse. 1985; Burron and Lappin-Scort. 2005; Campen et al.,
2003; Dees and Ghiorse, 2001: Douglas and Douglas. 2001; Edwards
et a|..2003: Fredrickson et a|..2004; Ghiorse and Chapnick. 1983; Krumholz
et o1..1997: Leveil le et q|.,2000: Macalady and Banfield,2003: pennisi,2000;
Schabereiter-Gurtnerer a|..2002; Sinclairand Ghiorse, r989; Templeron et al.,
2005; wellsbury et al.,2002: Zhang and Lanoil. 2004), researchers in biogeo-
chemistry are now increasinglr focused on expanding their understanding of
roles of environmental microorganisms at a more fundamental level. Many
important microbial processes happen at the interface between microorgan-
isms and earth or environmental materials. This necessitates a more compre-
hensive study and analysis of hor' microorganisms through their wide range
of metabolic capabilities interact with their en'ironments, especially at
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surfaces of earth and environmental materials. This surface biogeochemistry
can be highly variable at a microscopic level because of the small-scale
(ranging from one micron to hundreds of microns) surface heterogeneity,
which involves the distributions of clusters of mineral-inhabiting microorgan-
isms and reactive molecules of metal oxides and organic molecules. The
methodology commonly employed to study this type of heterogeneous biogeo-
chemical phenomenon is a combination of microscopic imaging and
synchrotron radiation (SR)-based X-ray spectroscopy techniques. The inter-
ested readers can read reviews (Brown and Parks, 2001; Gordon and Sturchio,
2002) and other relevant studies (Amonette et al. " 2003; Arnesano et aL.,2003;
Benison et al., 2004; Benzerara et al., 2005; Cooper et al., 2005; De Stasio
et al., 2001; Fein el aL.,2002; Foriel et aL.,2004; Francis et aL.,2004; Jones
et al., 2003; Jurgensen et al., 2004; Khijniak et al., 2005: Lack et al., 2002;
Li et aL.,2003; Lieberman et aL.,2003; Neal er al.,2004a,b; Nesterova et a/.,
2003; Panak et a\.,2002: Pickering er a1.,2001;Prange et aL.,2002a,b; Renshaw
et al. ,2005; Saita and Maenosono, 2005; Sarret e t al. ,2005; Suzuki et al. ,2003;
Tebo el aL.,2004,2005; Templelon et al., 2005; Toner et al., 2005; Twining
e t al., 2004;Y ogt et al., 2003 ; Watson and Ellwood, 2003 ; Wildung er a 1., 2004;
Zouboulis and Katsoyiannis, 2005). SR-based X-ray spectromicroscopy stud-
ies have provided important and unique information about how microorgan-
isms interact with earth and environmental materials. However. the energy
range associated with SR-based X-ray spectromicroscopy techniques is
between tens and thousands of electron volts (eV), which can adversely
affect, harm, or even kill the microorganisms. Consequently, it has limited
the use of these techniques to measuring the biogeochemical actions only at
single time points.

Being able to measure real-time sequential molecular changes in a bio-
geochemical system, as they are happening on surfaces of earth and
environmental surfaces. has been a long-standing scientifrc desire in biogeo-
chemistry. The new availability of SR-based infrared (IR) sources to the
scientific community in the 1990s provided this opportunity. Our group
began developing an SR-based Fourier transform infrared (SR-FTIR) spec-
tromicroscopy approach in 1998 for studying biogeochemical transforma-
tion of environmental pollutants, choosing the reduction of hexavalent
chromium by living microorganisms on mineral surfaces as the initial appli-
cation (Holman et al., 1999). Prior to the availability of SR-based IR
facilities, these type of in vivo and in .rilu measurements were very diliicult
for two reasons. First, earth materials inherently have low IR reflectivity
surfaces. High-quality IR spectroscopy measurements of earth and envtron-
mental materials require a high-IR photon flux on small surface areas.
Without an SR-based source. one often needs to coadd thousands to tens
of thousands of spectral scans, which can be prohibitively time consuming.
Second, the IR measurements of live microorganisms had been problematic.
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Investigators were required to feed bacteria with a substantial quantity of
deuterated substrates in order to obtain sufficient signal-to-noise spectra
(Cameron et al., 1983). However, deuterated substrates are known to alter
activities and even produce stresses in microorganisms (Newo et a\.,2004;
Pshenichnikova et al.. 2004:).

There are 13 synchrotron IR spectromicroscopy facilities around the
world with several more under construction or planned (see, for instance,
http ://www.lightsource. ca; http ://www. diamond. ac.uk). Within the United
States, there are four active synchrotron IR facilities with microscopy cap-
abilities: (1) the National Synchrotron Light Source (NSLS, Brookhaven
National Laboratory), (2) the Synchrotron Radiation Center (SRC, Uni-
versity of wisconsin-Madison), (3) the center for Advanced Microstrucrures
and Devices (CAMD, Louisiana Stare University), and (4) the Advanced
Light Source (ALS, Lawrence Berkeley National Laboratory); each has
similar capabilities and uniqueness. All four are user facilities (i.e., available
to qualified scientists). The first SR-FTIR spectromicroscopy experi-
ments relevant to earth materials were the measurements of composition
of clay mineral surfaces (Bantignies et al., 1995), followed shortly by mea-
surements of hydrous minerals (Lu et al.,1999) and of entrapped oil-water
inclusions (Guilhaumou et al., 1998). The first SR-FTIR spectro-
microscopy experiment relevant to cells, although not performed on bacte-
ria, was chemical imaging of single human cells (Jamin et al.,1998), bones
(Miller et al., 1998), and plant tissues (Wetzel et al., 1998). The first SR-
FTIR spectromicroscopy experiments relevant to biogeochemistry in vadose
environments were the in situ and in riuo sequential measurements of reduc-
tion of hexavant chromium by a colony of basalt-inhabiting bacteria
(Holman et al., 1999) and of metabolization of pyrene by a colony of soil-
inhabiting bacteria from a Superfund site (Holman et a\.,2002b). The first
SR-FTIR spectromicroscopy experiments of aqueous environments was
the characterization of metal--cyanobacteria sorption reactions (yee et al.,
2004b).

The purposes of this chapter are to familiarize readers with SR-FTIR
spectromicroscopy and to realize key issues requiring consideration prior
to its application to biogeochemistry. Rather than presenting a com-
prehensive review of all applications of SR-FTIR spectromicroscopy, we
shall focus on contents that illustrate the requirements and utility of sR-
FTIR spectromicroscopy as a noninvasive molecular probe for tracking
molecular changes in a biogeochemical system. The interested readers
should read review articles on applications of SR-FTIR spectromicro-
scopy to other related areas, including ecological and agricultural sciences
(Raab and Vogel, 2004), surface and environmental sciences (Hirschmugl,
2002a,b), and biology and biomedicine (Dumas et al., 2004; Holman et al.,
2000a,b; Miller et a\.,2000,2002;Wetzel et a\.,2005). Readers can also flnd
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information in the reports on the applications of SR-FTIR spectromicro-
scopy, characterizing chemistry of fossil microorganisms (Foriel et a\.,20041,
susceptibility of plants to mildew (Vogel et al., 2002, 2004), structural-
chemical features of feeds and plants (Yu, 2005a,b;Yu et aL.,2003,2004),
transport of pollutants in plants (Dokken et a1.,2005a,b,c), carbon in
interplanetary dust particles (Bradley et al. , 2005), and microbial mineraliza-
tion and silicification processes (Benning et a\.,2002,2003,2004a,b;Yee and
Benning, 2002; Yee et al., 2003, 2004a,b).

il. SR.FTIR SPECTROMICROSCOPY

SR-FTIR spectromicroscopy takes advantage of three existing tech-
nologies: (l) the well-known sensitivity and noninvasive nature of mid-IR
spectroscopy to chemical functional groups in molecules and their confor-
mations, (2) the convenience of a microscope to locate areas for molecular
and composition analysis, and (3) the high signal-to-noise ratio provided
by a noninvasive SR-based IR light source. Mid-IR spectroscopy is also a
rapid, reagentless, and nondestructive analytical technique, which has a wide
range of applications in biosciences, molecular or organismal. In the later
section, we shall describe SR-FTIR spectromicroscopy and its issues as a
biogeochemical microprobe following the background section.

A. Bacxcnor,.Lu

The application of SR-based IR light as a source of energy to study
biogeochemical processes is an experimental effort. It is based on the prin-
ciple of vibrational spectroscopy of molecules in the IR region. FTIR
spectroscopy of a sample is the use of a Fourier transform interferometer
to study the interaction of incoming IR light with molecules in the sample.
The instrumentation for Fourier transform spectrometry includes a source
of IR light, a means to measure each photon energy, an interface allowing
this discreet light to be transmitted or reflected by the sample, a detector,
and a data recording and analysis system. The typical measurement recorded
is a spectrum of IR absorbance in the sample as a function of the wavelength
of IR light (typically expressed in units of wavenumber, cm r;. Atoms of
a molecule vibrate with characteristic frequencies (normal modes) governed
by their chemical bonds and symmetry environment. Incoming IR light
will be absorbed by the molecule, if the following two criteria are met:
(l) the frequency of the IR light matches exactly the frequency of the
vibrational mode, and (2) the vibration causes an asymmetric change in
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the charge distribution within the molecule (dipole moment). The strength of
the dipole moment correlates with the strength of the absorption. IR
spectroscopy is, therefore, sensitive to the presence of many chemical func-
tional groups (structural fragments) in molecules in samples, and taken
together, the set of vibration modes are unique for every molecular configu-
ration. (More in-depth readings regarding vibrational spectroscopy of mole-
cules and macromolecules can be found at the web site: http://infrared.als.
lbl. gov/FTIRinfo. html).

IR radiation was discovered by William Herschel in 1800 during his
investigations of the solar spectrum. However, the potential of using IR
light energy as a source for spectroscopy was not realized until the later part
of the ninteenth century. W. dew. Abney and E. R. Festing were the first
researchers to successfully use IR radiation as a light source to obtain IR
spectra of almost 50 organic compounds and recommended the use of IR
spectroscopy as an analytical tool [Phil. Trans. Roy. Soc. London (1882).
172,887-9181. In 1905, William Weber Coblentz referenced this empirical
evidence and demonstrated in his investigations of IR spectra that different
atomic and molecular groupings absorbed specific and characteristic wave-
lengths. However, it is the application of Fourier transform spectroscopy in
conjunction with a Michelson interferometer in l9l I by Rubens and Woods
that laid the foundation of modern FTIR spectroscopy. Difficulties asso-
ciated u'ith computing Fourier transformations manually had hindered the
application of the technology. Throughout the first half of the twentieth
centur)'. its applications were limited mostly to researchers in physics and
astronomv. although it had found its place in the Second World War as
a useful diagnostic tool in determining the concentration and purity of
butadiene in synthetic rubber.

In 1949,Barer et al. (1949), Gore (1949). and Blout er al. (1949\ demon-
strated the potential importance ofjoining IR spectroscopy u.ith microscopy
to seeing microscopic structures in a sample, analyzing molecular chemistry,
and relating composition with the observed microstructures (Barer, 1949,
1953, 1954; Barer and Joseph. 1954; Bird and Blout. 1952: Blout. 1953).
With continued improvement in high-quality detectors and spectrometers
and the rapid developmenr in microprocessor technology, the first practical
IR microspectrometer. s'hich u'as conceived by Coates et al. (1953), became
available commerciallr in 1978. Shortly afterwards, the innovative appli-
cation of the Fast Fourier rransform algorithm (Cooley and Tukey, 1965) to
FTIR spectroscop)'. aided b1 the availability of low-cost high-speed compu-
ters, has led to an erpltrsive erou'th in mid-IR spectromicroscopy instrumen-
tation primarih in rhc' 1990s. and making it a popular analytical approach to
detectin_u. idenriir ing. and quantifying many molecular species mostly in
b io logical  sampl . - .
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The IR sources used in these FTIR spectromicroscopy (or microspectro-
scopy) instruments are thermal emission elements (or thermal globars) that
produce a graybody spectrum from a filament heated to between 1000 and
2000 K. These globars can be rod-, coil-, or u-shaped, physically moderate in
size (at least several millimeters), and typically radiate in all directions. As
shown in Fig. 1, the FTIR bench optics collect the light, then collimate and
pass it through the scanning interferometer. Next, this modulated light is
directed into an IR microscope. The IR microscope objective and condenser
optics are reflective and focus the IR light to a small spot on a sample.
Finally, the light that the sample reflects or transmits is collected, focused
onto a detector, and processed by a computer to produce an IR spectrum.
The first FTIR spectromicrosocpy experiments were measurements on coals
(Brenner, 1983) and polymers (Peitscher, 1986) during the first half of
the 1980s. During the early 1990s, the first set of experiments performed
on biological materials were on isolated human cells (Daoud et at., lggg),
tissue specimens (Centeno and Specht, 1992; Centeno et al., 1992), and plant
cells (Mccann et aL.,1992). The FTIR spectromicroscopy measurements of

Adjustabel
t n a r . t r  r 1 6

Focusing
objeclive

x-y-z stage
with cellular

microincubator

Figure I Schematic diagram of Fourier transform infrared (FTIR) spectromicroscopy
experimental setup. Mid-IR radiation from either a synchrotron or a globar is transported to
an FTIR interferometer bench. After modulation by the interferometer, an IR microscope with
all-reflecting optics focuses the beam onto the sample. Microbial or biogeochemical samples can
be placed inside an on-stage mini-incubator with environmental controls. The stage is computer
controlled and rasters the sample in the x-y-z plane to a0.1 pm precision to obtain spectral maps
across the sample. The light reflected from the sample is collected by the same microscope optlcs
and sent to an IR detector. A computer performs a Fourier transform on the measured
interferogram to obtain an IR spectrum. (Reproduced with permission ftom Spectrosc.-Int. J.,
2003,17,  139 159.  IOS Press.)
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bacteria were first conducted in conjunction with chemometrics to discrimi-
nate different bacterial strains (Kansiz et a\.,1999; Lang and Sang, 1998)
almost 10 years later. The popularity of FTIR spectromicroscopy in research
(as measured in terms of numbers of publications involving the applications
of FTIR spectromicroscopy) soared (Fig. 2).

However, light emitted from thermal globars does not provide sufficient
signal-to-noise for the detailed spectral interpretation of microbial assem-
blies of several to tens of microns. Such measurements were especially
difficult to obtain if the microorganisms were on surfaces of earth materials
with low IR reflectivities. High-quality IR spectroscopy measurements
of these materials require high-IR photon flux focused to a small spot
(brightness). The brightness attainable in IR spectromicroscopy is governed
primarily by how point-like the source is. Thermal emission sources, for
example, can be focused with an IR microscope to a spot with a 75 100-pm
diameter. To measure something smaller, such as a small microbial colony
on a mineral surface, one needs to use an aperture to mask away part of the
incoming light, or distribute the incoming light among an array of detectors.
The use of an aperture can significantly reduce the signal strength.

Our earlier work showed that the brightness (flux per unit area) attainable
from a conventional thermal globar lR source is not sufilcient for the use of
FTIR spectromicroscopy to study biogeochemical processes on mineral
surfaces without a surface treatment (Holman et al., 1998), Accordins to
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the earlier discussion, it follows that one needs an IR source that acts like a
true point source, that is, a source that could be focused to a diffraction-
limited spot size to optimize for maximum brightness. With the f/l optics
(i.e., the primary focal ratio is fll), this yields a diffraction-limited spatial
resolution of approximately the wavelength of the light without loosing any
signal strength. This is the benefit of using a synchrotron as an IR source.

B. Sn{cHnornoN IR Lrcnr Sor,ncps

A synchrotron is a high-energy electron storage ring, optimized for the
production and collection of the intense light radiated by the electrons upon
acceleration. In modern synchrotrons, electrons are first accelerated to near
the speed of light and then injected into the storage ring (Fig. 3A). Electrons
that travel near the speed oflight are called relativistic electrons. The storage
ring is designed to make the traveling electrons complete a loop via a series
of bending magnets and straight sections. When the electrons encounter a
magnetic field, they are deflected and emit electro-magnetic radiation-light.
Typical bending magnets have a magnetic field strength of =1 T. This field

Bend-Magent radiation Wavenumbers (cm 1)
Fsr- * l i i -  ' . '  : : . . : : . .

l0 100 1000 l0 000 100,000

0  0 1  0 . 1  1  1 0  1 0 0  T 0 0 0  1 0 . 0 0 0
Photon energy (eV)

Figure 3 Al overview of synchrotron radiation. (A) Guided by a series of bending magnets
and straight sections, relativistic electrons inside a storage ring complete a loop. When the relativ-
istic electrons encounter a magnetic field, they are deflected and they emit electromagnetic radiation
with energy photons up to hard X-rays. (B) This so-called bending magnet spectrum extends from
very low energies (far-IR) continuously to a critical energy in the soit or hard X-ray, depending on
the energy of the synchrotron. The radiation pattem lrom relativistic electrons is such that its
effective source size can be considered very close to an ideal point source. (See Color Insert.)
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strength, coupled with the velocity of the electrons, determines the energies
of the emitted photons. This means that higher velocities (higher energy
storage rings) and/or higher magnetic fields produce higher energy photons
up to hard X-rays. This so-called bending magnet spectrum (Fig. 3B)
extends liom very low energies (far-IR) continuously to a critical energy in
the soft or hard X-ray, depending on the energy ofthe synchrotron. Because
the radiation pattern from relativistic electrons is such that the opening angle
of the emitted radiation is very small, the effective source size of the IR
radiation source is dominated by diffraction, and thus can be considered as
very close to an ideal point source. Interested readers are directed to an
informative overview of SR by Sham and Rivers (Sham and Rivers, 2002).

As expected, in the mid-IR region - 400-4000 s1n-r - the effective
source size for a typical synchrotron light source is dominated by diffraction
(Carr et al., 1995; Holman et al., 2003; Reffner et al., 1995, 1997). This
means that for SR-FTIR spectromicroscopy the IR beam is focused visibly
to a spot with a diameter of about 0.7 times the wavelength, which for the
mid-IR wavelengths of 2.5-25 trrm yields a spatial resolution of 1.7-17 pm
(Levinson et a|.,2006) This is smaller than a typical microbial colony, thus,
providing a spatial resolution smaller than a microbial colony with hundreds
to a thousand times the brightness of conventional IR sources (Fig. a).

"{- Sychrotron lR
+ Thermal lR source

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
Apenure size (pm)

Figure 4 comparison of measured noise around i00% reflectance for the themal and
synchrotron IR sources with different aperture size expressed in terms of signal-to-noise ratio
on a log scale as a function of aperture diameters for the synchrotron and thermal IR sources.
The synchrotron source extends FTIR spectromicroscopy to below 20 pm spatial resolution
with a signal-to-noise advantage over conventional IR sources of at least 100. (Reproduced with
permission from Spectrosc.-Int. J.,2003, 17, 139-159. IOS Press.)
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To demonstrate the advantage of using a synchrotron as an IR energy
source for FTIR spectromicroscopy, we describe here three studies that
compare the measured signal-to-noise ratio as a function of aperture size
for a conventional thermal globar IR source and the synchrotron. The first
two studies were performed using a Thermo Nicolet Nexus 870 FTIR bench
and a Thermo SpectraTech Contiuum IR microscope at the ALS beamline
1.4.3. The third study was performed at LURE (Laboratoire pour I'Utili-
sation du Rayonnement Electromagn6tique, Orsay, France).

During the first experiment, we measured 100% reflection lines utilizing a
gold-coated glass sample for both sources and for various aperture sizes.
We used an MCT-B detector, coadded 128 scans for _background and
sample measurements at a spectral resolution of 4 cm-' and a scanning
mirror velocity of 1.8988 cm st. The signal-to-noise value centered at
2500 cm ' was obtained for both the conventional thermal source and the
synchrotron source, using different aperture settings. The value was calcu-
lated by dividing the measured single beam intensity at this wavenumber by
the corresponding root-mean-square (RMS) noise value. The advantage of
signal-to-noise improvement is shown in Fig. 4. For the thermal globar
source, the signal-to-noise level decreases significantly as the aperture diam-
eter decreases. Signals become essentially unusable at aperture sizes below
20 x 20 pm'. This is because the size of the thermal globar source, when
focused to a surface, is greater than 70 x 70 pm'(Carr,1999;Holman et al.,
2003; Reffner et al.,1995,1997). By reducing the aperture size, one simply
reduces the total IR signal. For the synchrotron source, the signal-to-noise
ratio is significantly better for almost all aperture sizes, although the ratio
also begins to decrease when the aperture size is smaller than the diffraction-
limited spot size. This difference is because of the focused spot size of the
synchrotron source, which is diffraction limited (1 .1-17 pm in diameter)
(Carr, 2001; Levinson et a\..2006'). Consequently, its signal-to-noise ratio
is only affected when the aperture size becomes less than the diffraction-
limited spot size (starting with the longest wavelengths within the mid-IR
region).

The second experiment compares the signal-to-noise ratio on earth
materials. In Fig. 5, there is a geological example of how the high-brightness
(i.e., high signal-to-noise ratio) of the synchrotron IR source makes very
time consuming and difficult measurements possible. A tiny piece of ocean
basalt was mounted in a diamond anvil cell to achieve extremely high
pressures and the IR absorbance of the sample was measured at a pressure
of 32 GPa. When using a conventional FTIR spectromicroscopy system, a
7-h signal averaging of over 60,000 scans was required to begin to detect
the spectral features. With a synchrotron source, a significantly improved
signal-to-noise was achieved after only 2 min of averaging 256 scans (Panero
et q\..2003\.
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Figure 5 Spectra of a sample synthesized at 32 (+2) Gpa and 2950 (+ I 50) K, comparing results
lrom a synchrotron-based system [black line, advanced light source (ALS) beamline i.4.3; Nicolet
Magna 760 with KBr beamsplitter and an MCT detector] to the spectrum lrom a lab-based system
(gray line, Bruker IFS-66v using a CaF2 beamsplitter and an InSb detector). The collection time for
the synchrotron-based system was about 2 min (256 scans, top) compared to about 7 h (60,000 scans,
bottom) for the lab-based system. While both show a distinct peak at 31 1 I cm- I corresponding to OH
vibrations in stishovite, the synchrotron-based spectrum has a better signal-to-noise ratio, as well as
better spatial resolution. There is no detectable absorption at 3450 cm-l, where oH in Mg-
perovskite is expected to absorb. A control experiment was performed on a dry. synthetic basalt
glass starting material (sample 1114b_6); synthesis conditions were 33 (tl) Gpa and 2130 (+150)
K. No absorption features were found in the 3000 3500 cm-rregion for this sample (thin
line, bottom), again collected by synchrotron FTIR (panero et at., 2003). (Reproduced with
permission from J. Geophys. Res.-sol Ea,2003,109, 2039 2047, American Geophysical union.)

The third experiment compared the signal-to-noise ratio on biological mate-
rials. In Fig. 6, there are FTIR spectra from a single riving cell using a 6 x 6 pm2
aperture (Figure courtesy of P. Dumas). In this experiment, the investigators
clearly demonstrate that even with significantly longer averaging times, the
signal-to-noise of the globar measurement is so poor that the data are not
usable, whereas the synchrotron-based measurements show all the fine spectral
structures required for detailed analysis (Dumas and Miller, 2003).

C. SyNcrrnornoN IR SprcrnomcRoscopy
oF BrocEocHEMrcAL Sysrpms

The experimental evidence described earlier reveals that for studying
a surface phenomenon with a spatial resolution ranging from 1.7 to l7 pm,

31 11  cm- ]

Synchrotron-based OH in
FTIR unconverted glass
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l G l o b a r : 6 x 6 p m z  I

' r '  i | ' i

3500 3000 2500 2000 1500 1000
Wavenumbers (cm-1)

Figure 6 FTIR spectra of a single cell using a 6 > 6 pm2 aperture. comparing results
from a synchrotron-based system (red, at Laboratoire pour I'utilisation du Rayonnement
Electromagn6tique, Orsay, France) to the spectrum from a lab-based system (green). The
collection time for the synchrotron-based system was about 16 s (32 scans, bottom) compared
to about 500 s (1000 scans, middle) for the lab-based system. These investigators clearly
demonstrate that even with significantly longer averaging times, the signal-to-noise ofthe globar
measurement is so poor that the data are not usable, whereas the synchrotron-based measure-
ments show all the fine spectral structures required for detailed analysis. (Figure courtesy of
P. Dumas.) (See Color Insert..l

the signal-to-noise ratio provided by a synchrotron IR source is up to 1000
times better than the signal-to-noise ratio provided by a thermal source.
Since the SR-based IR beam does not induce any detectable side-effects in
live cells (Holman et al., 2002a) and has negligible sample heating effect
(Martin et al., 2001), SR-FTIR spectromicroscopy is clearly an ideal micro-
probe for a noninvasive study of heterogeneous biogeochemical processes
in vivo and in situ, for example, individual microbial colonies or larger
biological systems in which local biochemistry may have significant spatial
variations.
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However, because of the complicated nature of biogeochemical systems,
one must consider the following issues carefully before applying this tech-
nology to probe the successive biogeochemical processes. First, microorgan-
isms are exceedingly sensitive to their immediate environments. To reliably
study molecular changes in a chain of biogeochemical events, SR-FTIR
spectromicroscopy measurements must be made in well-controlled experi-
ments that simulate their viability and functionality under in situ condirions.
This is especially important since microbial cells alter earth and environmen-
tal materials mostly via their metabolic activities (Ehrlich, 1998, 2000). Such
experimental conditions of biogeochemical processes are best conducted
under well-controlled conditions that are similar to the in sita conditions.
Such similarities can at least be at the appropriate temperature, pH. redox
potential (Eh), nutrient. chemistry of bulk water. pore water, relative
humidity, and gas composition. A good example of the importance of
controlling the experimental conditions is temperature effects on microbial
transformation of redox sensitive elements such as iron and sulfur. An
increase in temperature could increase microbial metabolic activity and
oxygen removal (Hines et al.,1982).leading to a decrease in redox potential
(Lyons et al., 7979: Sorensen et ul., 1979). These changes could cause shifts
in the relative importance of specific terrninal electron acceptors used in
bacterial respiration (Revsbech et al., 1980; Sorensen et al., 1979). The
decrease in redox potential can also affect the chemical and physicochemical
state of redox-sensitive elements. In addition to changing chemistry both in
bacteria and the elements, these variations may also affect the chemistry of
the overlying thin film of water through changes in diffusional fluxes and
other processes. To reliably study molecular changes in this chain of biogeo-
chemical events, SR-FTIR spectromicroscopy measurements must be made
in experiments that simulate in silu conditions using well-controlled flow
through cells with IR-transparent windows. There are several research
groups developing various types of automated microfluidic incubation plat-
forms to provide a controlled mechanism to rapidly n-ranipulate these exper-
imental conditions. Some of these platforms also control the thickness of the
water fi lm to allow for the IR observation of the biogeochemical processes in
aqueous environments. Others have sensors to provide additional measure-
ments of relevant physiological and geochemical parameters.

Second, a prior knowledge regarding the type of the pollutants and the
pathways of their possible biogeochemical transformation is important for
the successful application of SR-FTIR spectromicroscopy. For heavy metal
and metalloid pollutants, they constitute the most difficult environmental
problem because they cannot be destroyed once introduced into the envi-
ronment. A key goal of using SR-based IR spectromicroscopy is to charac-
terize how intrinsic microorganisms affect the speciation of these heavy
metals and metalloids, which dictates the overall mobility. bioavailability.
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toxicity, and other health risks in the biosphere. An appropriate SR-FTIR
spectromicroscopy experiment is one that allows investigators to obtain such
fundamental knowledge as the stability and mobility of the parent metal
compounds, their interactions with the microorganisms, and the altered
stability and mobility of the intermediate products under in situ and in yivo
conditions. Our approach to this issue has been both fundamental and
applied in nature. We often complement the SR-FTIR spectromicroscopy
experiments with successive in vitro and in yiyo studies of model systems of
varying complexities to approximate membrane permeability, biotransfor-
mation, toxicity, and couple them with spectroscopic studies. In doing so,
we have been able to identify, at least at a functional group level, the targets
to be measured and ensure that these targets are likely to be in the biogeo-
chemical system to be investigated.

A good example is the microbial transformation and detoxification of
chromium in earth materials. Chromium is a redox-sensitive metal pollutant
that enters the environment primarily from industries such as leather
tanning, wood preservation, metal plating, and alloying. The two important
oxidation states of chromium commonly found in environments are trivalent
[Cr(III)] and hexavalent [Cr(VI)] states, which have widely conrrasring
mobility and bioavailability. Most Cr(VI) compounds are highly soluble in
water and are readily bioavailable to ecological receptors, while most Cr(III)
compounds are less water soluble and less bioavailable. Cr(VI) compounds
are among the earliest chemicals to be classifled as mutagens and human
carcinogens (IARC, 1990; Levina et a\.,2003; Stern, 1982). Its genotoxic and
carcinogenic effects are associated with its ability to enter cells rapidly
through nonspecific transport. Intracellular biomolecules, such as polysac-
charides, l-ascorbic acid, glutathione, and other reductases, readily reduce
Cr(VI) species to form an array of genotoxic Cr(III) complexes and other
radicals that can cause single-strand breaks and plasmid DNA nicking, in
addition to a wide variety of DNA lesions and additional oxidative damage
(Codd andLay,2001;  Di l lon et  a l . ,1997;  Levina et  a l . ,1999 Snow, l99l ;
Sreedhara et al.,1997; Tsou e/ al.,1997 Voitkun et al.,1998'). Biogeochemi-
cal factors that can lead to the reduction of CI(VI) to insoluble and/or
nongenotoxic Cr(III) compounds in environments are very significant for
reducing chromium toxicity. Many indigenous bacteria in chromium-
polluted environments possess a multiplicity of survival mechanisms that
can potentially transform soluble chromium to less soluble forms. Our
experiments show that some Cr-resistant microorganisms immobilize and
reduce Cr(VI) to stable Cr(Ill)-complexes extracellularly via interactions
with diverse groups of biomolecules (Codd and Lay, 1999, 2001; Codd
et al., 1997; Gez et al., 2005: Levina et al., 2004) and the formation of
genotoxic intermediates Cr(V)- and Cr(IV)-complexes (Kalabegishvili
et al., 2003; Tsibakhashvlli et al., 2002a). This information, in coniunction

9i



o4 H.-Y. N. HOLMAN AND M. C. MARTIN

with our earlier SR-FTIR result (Holman et a\.,1999), was applied to the
design and execution of an additional in-depth SR-FTIR spectromicroscopy
study of Cr(VI) transformation on mineral surfaces (Holman, 2004). The
speciation of Cr(III) is one of the focal points in the study. There are concerns
that Cr(IIf [as Cr(OH)3] can be reoxidized to form Cr(VI) compounds
(Chinthamreddy and Reddy, 1999). However, our preliminary SR-FTIR
spectromicroscopy results indicate that only a small fraction of the Cr(III)
compounds is found as Cr(OH)3

Unlike heavy metals and metalloid pollutants, organic pollutants can be
destroyed. Once they have entered into the biosphere, they can be degraded,
metabolized, andlor mineralized by many intrinsic bacteria via one of the
many possible pathways of different complexities and kinetics (da Silva
et al., 2003; Furukawa, 2000, 2003; Furukawa et al., 7993, 2004; Hale
et ql., l990a,b; Kim et al., 2004; Kumamaru et al., 1998; Misawa et al.,
2002; Pothuluri et al.,1995,1998a,b,1999; Rogers and Hale, 1987; Suenaga
et aL.,2001,2002). A large volume of pathway information is available at the
University of Minnesota biocatalysis/biodegradation database (http:ll
umbbd.ahc.umn.edu/). However, many of the pathways and toxicity of the
intermediates are unknown. The effect of environmental factors on the
microbial ability to degrade organic pollutants remains uncertain. Our
approach using SR-based IR spectromicroscopy to study biodegradation
of organic pollutants by intrinsic microorganisms is less fundamental but
more applied in nature. Questions to be addressed include whether the
microorganisms are capable of decomposing the organic pollutants, and
what the geochemical factors that affect the bioavailability of the organic
pollutants to the microorganisms are. For microorganisms that degrade
organic pollutants via a known pathway, we would also address if the
intermediates are persistent and/or harmful to ecological receptors (Holman
et aL.,2002b).

Finally, it is important to realize that information derived from SR-FTIR
spectromicroscopy is only the tip of an iceberg of information. Because of
the complexity of a biogeochemical system, this information alone is not
sufficient for a thorough understanding of how intrinsic microorganisms
transform pollutants and what factors could alter the microbial ability to
transform the pollutants. It is also not sufficient for making reliable predic-
tions of the potential risks of these pollutants and intermediates to ecological
receptors and humans. The use of multiple complementary biochemical,
analytical, and imaging techniques is necessary. A good example of the use
of complementary techniques is the collaborative study by researchers from
the Lawrence Berkeley National Laboratory (USA) and from the Georgian
Academy of Science (Republic of Georgia) of chromium reduction by
basalt-inhabiting aerobes (Abuladze et al., 2002; Asatiani et al., 2004:
Holman et al., 2004; Kalabegishvili et al., 2003; Tsibakhashvili et al.,
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2002a,b,2004). In addition to the use of SR-FTIR spectromicroscopy to
track the sequential reduction of chromium, they also used sodium dode-
cylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) to identify
chromium-induced changes in cell wall protein composition (Abuladze
et a1.,2002), capillary electrophoresis to determine the effect of cell wall
proteins on the mobility of chromium through cell wall (Tsibakhashvili
et aL.,2002a), electron spin resonance (ESR) to determine/confirm chromium
speciation in bulk cells (Kalabegishvili et aL.,2003), and micro-X-ray fluo-
rescence analysis (p XRF) and micro-x-ray absorption fine structure (p-
XAFS) imaging of Cr, Fe, and Mn distribution. Scanning electron micros-
copy and transmission electron microscopy were also employed (Holman
et a1.,2004). Such synergistic use of an artay of different analytical and
imaging techniques has allowed these researchers to discover the unexpected
accumulation and immobilization of stable and toxic chromium intermedi-
ates by microorganisms, which will have significant implications in the
applications of intrinsic microorganisms to remediate Cr(Vl)-polluted
earth and environmental materials.

ilI. BIOGEOCHEMICAL PROCESSES MEASL'RED
BY SR-F-[IR SPECTROMICROSCOPY

The measurement and imaging of biogeochemical processes by means of
SR-FTIR spectromicroscopy involves the use of visible light and reflecting
optics to view a magnifled image of the sample and to select a microscopic
surface area on the sample for IR reflection-absorption spectroscopic anal-
ysis. In this section, three biogeochemical studies conducted at the ALS are
highlighted, following the description of instrumentation and spectral anal-
ysis. Interested readers are directed to read applications in other related
biological, biogeochemical, and environmental areas (Benning et aL.,2002,
2003, 2004a,b; Bonetta et al., 2002; Bradley et al., 2005; Dokken et al.,
2005a,b; Facciotti et aL.,2007; Foriel er aL.,2004; Ghosh et a\.,2001;Yogel
et al., 2002, 2004; Yee and Benning, 2002; Yee et al., 2003,2004a,b; Yu,
2005a,b; Yu et al., 2003, 2004).

A. INsrnulrnvrxrroN

The instrumentation at beamline 1.4.3 at the ALS is similar to FTIR
spectromicroscopy systems that are commercially available, except that the
thermal source is replaced by an IR beam from the synchrotron (Fig. 7).
Additionally, the beam is also passed through a beam position-locking
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Figure 7 The beam position-locking svstem instrumentation at beamline 1.4.3 at the ALS. It
is specifically made for probing biogeochemical processes in situ and in vivo. The beam lrom
the synchrotron (A) is passed through the beam position-locking system (B) and then enters the
commercially available FTIR spectromicroscopy system (C). During the experiment, samples
are kept inside a stage mini-incubator (D). The addition of the beam-locking system is ex-
ceedingly helpful when studying biogeochemical materials that often have fine and hiehlv
heterogeneous surface features.

system (McKinney et al., 2000; Scarvie et al. , 2004) to minimize the effect of
the beam motion. Without this system, the beam tends to move on the
sample during data acquisition for a variety of reasons. Such movements
can be as large as several microns and cause artifacts and/or noise in the
data. The addition of the beam-locking system is exceedingly helpful, when
studying biogeochemical materials that often have fine and highly heteroge-
neous surface features.

The samples are maintained inside a mini-incubator, which is mounted on
the microscope stage. The sample is positioned using a computer-controlled
x-y-z stage with 0.1-prm precision allowing mapping measurements of FTIR
spectra (through the incubator's ZnSe window) as a function of x- and
y-position on the sample. The selection of the area is relatively subjective
and relies on the geometry, color, crystallographic properties, and other
material-specific features of the sample surface. Once the sample area is
selected, the spectroscopic information of the selected surface area can be
recorded in situ in a reflection mode.
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B. Sppcrncr ANar-ysrs

Because of the complexity of a biogeochemical system, one of our key
efforts has been to carefully determine IR spectral features that are truly the
molecular markers of the biogeochemical phenomena to be investigated. IR
spectra of biomolecules in microbes (Choo-Smith et al., 2001 Helm and
Naumann, 1995; Helm et al., l99la,b; Kirschner et aL.,2001; Labischinski
et al., 1989l- Maquelin et a\.,2002,2003; Naumann et al., 1982,1988, 1996;
Ngo-Thi et a1.,2003; Schultz and Naumann, 1991; Schultz et al., 1987;
Vandermei et al., 1993, 1996') of many relevant minerals (Arnold and
Wagner, 1 988; Beran et al., 1993; Collins, 199 1 ; Deline au et al., 1994 Eyring
and Wadsworth, 1956; Farmer, 1914; Ha et al., l99l1' Keller et al., 1952:
Kretzschmar et ql., 1993 Luys et al., 1982; Mielczarski et al., 1993: Nguyen
et al., l99l Plesko et al., 1992 Povarennykh, 1978; Rossman and Aines,
1991; Salisbury et al., l99l; Vilas er al., 1994: White, l97l) and common
enviror'mental pollutants (Abdullah et al., 2003; Bauschlicher, l998a,b;
Bauschlicher and Bakes, 2000; Bauschlicher and Langhotr, 1998; Bernstein
et a|.,2005; Carrasco-Flotes et a\.,2004,2005; Chauhan et aL.,2004; Griff ith
et al., 1959; Hawkins et al., 1955; Hudgins and Sandford, 1998a,b,c;
Hudgins et aL.,2000; Humphrey, 1961; Janni et al.,1997 Jensen, 2004a,b;
Jensen and Jensen, 2004; Li et al., 2004; Ludwig et al. , 2000; Mattioda et al. ,
2002; Pauzat and Ellinger, 200 1, 2002; Ruiterkamp e t al., 2002; Seelenbinder
and Brown, 2002; Todd et al., 2002; Zhang et a1.,2005) are already well-
known with specific peaks and groups of peaks that can be related to specific
biochemical and chemical groups of single molecules in an ideal system. The
traditional approach of spectral analysis, which is intended to identify
particular compounds, involves a band-shape analysis followed by direct
assignment of characteristic absorption bands in the IR spectrum. However,
in a complicated and often transient biogeochemical system under ln situ and
in vivo conditions, these specific peaks and bands of peaks may shift, and the
overall pattern may even change and deviate from the well-established
features. To date, our general approach has focused on a small number of
important spectral features that could be derived from a series of simplified
model systems prior to the SR-FTIR spectromicroscopy experiment. For
time-course experiments, we would also combine the traditional direct
assignments and the difference spectroscopy approach to guide the interpre-
tation of the absorption bands as a function of exposure time. We evaluated
the intensity of each absorption band by means of the method of the most
probable baseline (Lijour et al., 1994} It is important to note that as the
beam current of the synchrotron decreases with time between electron refills,
the beam intensity decreases proportionally, which needs to be taken into
account if one wants to accurately measure absorption band intensity.
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We have found that rescaling the intensity of the absorption bands by means
of an internal-standard equivalent approach works reliably.

C. AppucerroN Ex,cMprns

With the completion of sequencing of genomes of many organisms and
the continuous success in identifying gene products (proteins) and metabolic
pathways, one of the central interests in biogeochemical and environmental
research is to apply this wealth of information to understand and to design
appropriate strategies to utilize metabolic capabilities in living microorgan-
isms to remediate pollutants in earth and environmental materials. The
success of these directions will ultimately be determined by how well one
can measure without disturbing the relevant dynamic processes in a biogeo-
chemical system, for example, the redox transformations of heavy metals by
metal-reducing bacteria, or degradation of carcinogenic organic pollutants.
These examples will illustrate how SR-FTIR spectromicroscopy can be a
useful tool that allows one to get a step closer to achieve this important goal.

1. Reduction of Hexavalent Chromium
by Basalt-Inhabiting Aerobes

Compounds containing chromium atoms can be potentially hazardous
contaminants in the environment. The degree of the hazard depends on
the chemical state of the chromium in the compounds in which it occurs.
Chromium at its hexavalent state [Cr(VI)] is usually highly soluble in
water and therefore mobile in the environment, so the contamination
spreads, and it is toxic and suspected to be carcinogenic. However,
chromium at its trivalent state [Cr(III)] is relatively insoluble in water
and significantly less harmful. Geochemical and biogeochemical pro-
cesses that convert chromium from the hexavalent to the trivalent state
are potentially useful for environmental remediation. We demonstrated
the use of SR-FTIR spectromicroscopy to illustrate that certain bacteria
found naturally in basalt are effective agents in the "biogeochemical"
transformation of chromium from the undesirable hexavalent state to
the less harmful trivalent state, thereby resolving an on-going contro-
versy about the nature of the conversion. (Holman et a\.,7999).

This is the first time that biogeochemical transformation of Cr(VI) by
microorganisms on a mineral surface has been nondestructively monitored
and studied where it occurs. Distinct and relevant IR absorotion bands
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(Table I) were used as chemical markers to detect the presence of micro-
organisms and identify different chromium species on specimen surfaces. In
addition, the brightness of the IR radiation from the synchrotron IR beam-
line makes spatially resolved spectroscopy (spectromicroscopy) possible for
imaging biogeochemical systems.

Two reduction mechanisms in polluted geological materials have previ-
ously been postulated for the reduction of Cr(VI) compounds. The biological
mechanism requires the presence of microorganisms to aerobically reduce
the Cr(VI). The chemical mechanism relies on metal oxides, such as Fe(II)
compounds, to catalyze the Cr(Vl)-reduction reaction. We conducted syn-
chrotron FTIR spectromicroscopy experiments to distinguish the relative
significance of these two mechanisms. In addition, we evaluated the effects of
common organic cocontaminants, such as toluene vapor, on the biotic
reduction process (Fig. 10).

For magnetite surfaces of mixed iron oxides that contain no living micro-
organisms, a 5-day exposure to Cr(VI) compounds resulted in statistically
insignificant changes in the IR chemical markers, indicating that little catal-
ysis of Cr(VI) reduction was occurring. On samples with living microorgan-
isms, however, some Cr(VI) reduction was detected (Fig. 8). Moreover,
when the samples with living microorganisms were incubated in dilute
toluene vapor, statistically significant changes in both IR-absorption inten-
sity and characteristic band shapes were observed for Cr(VI), as were new
bands signaling the existence of intermediate Cr(V). FTIR spectromicro-
scopy showed that the changes in the IR absorption bands occurred at the
sites of bacterial concentration. Measured images of the surface at charac-
teristic absorption bands showed a strong correlation between peak deple-
tion of Cr(VI) and depletion of toluene and peak concentration of biological
molecules (Fig. 9).

Table I
Spectral Regions and Distinct Absorption Bands Within Each Region for

Microorganisms (Including Bacteria), Cr(VI)-, Cr(V)-, and Cr(Ill)-Compounds, Toluene,
and Catechols in MineraVMicroorganisms/Cr/Toluene System (Holman et al., 1999\ (Reproduced

with permission from Geomiuobiol. J.o 1999, 16,307-324. Copyright 1999 Taylor & Francis.)

Compounds Spectral regions (cm r) Absorption bands (cm t)

99

Microorganisms (protein)
Cr(VI) compounds
Cr(V) compounds
Cr(III) compounds
Toluene
Catechols

I 800-1 500
900 800
900-700
850 750
800-6s0
800 700

-1650;  -1550
-846; -890
-830; -764
-810; -798
-728; -695
-770. -14)
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Figure 8 SR-FTIR spectra of chromate on magnetite surfaces during the 5-day experiment
of (left) abiotic reduction, (middle) biotic reduction in the absence of other organic compounds,
and (right) biotic reduction in the presence of toluene vapor (as a model volatile organic
compound ) .  (  )  /  <  I  day , sh i f t edve r t i ca l l y f o r v i sua l c l a r i t l ' .  (  ) / -  5da ) ' s .  A l t hough the
total chromate concentration for each of the three experiments u,as the same. microbial-mineral
surface roughness and redistribution during evaporation results in heterogeneous spatial dis-
tributions of CI(VI) concentrations. The most relevanl r'ibrational liequencies identified
are marked: 890 and 846 cm 1 correspond to Cr(VI). 810 and 765 cm r correspond to Cr(V).
770  and  l 42cm ta re  ca techo l s .  unJ  718  cm I  i ,  r o l ue r re .  We  obse r \ e  t ha r  m i c rob ia l  r educ r i on
of Cr(VI) is the dominant mechanism in our erperimental slstem. The microbial chromium
reduction is further enhanced during the microbial degradation of the organic compound
toluene (Holman et ttl.. 1999). (Reproduced with permission from Geonicrobiot. J..1999,16,
307 324. Copyright 1999 Taylor & Francis.) (See Color Insert.)

In a study to determine if this microbial reduction process could occur in
real geological samples, composite mineral surfaces of basalt rock chips
containing resident communities of microbes were exposed to solutions of
Cr(VI) and toluene vapor. At the end of 4 months, FTIR spectromicroscopy
showed that Cr(Vl)-tolerant and Cr(Vl)-reducing natural microorganisms
were thriving in association with Cr(III) (Fig. 10). The reduced Cr(III) state
was confirmed by XAFS spectroscopy at ALS beamline 10.3.2 (Fig. 11). The
nondestructive IR spectromicroscopy studies, combined with XAFS spec-
troscopy and microbiological techniques, show that highly mobile and
toxic Cr(VI) contaminants can be biologicalll' reduced into less soluble,
less toxic Cr(III) compounds. The FTIR method can now be expanded to
examine other IR-amenable microbial/chemical contaminant systems.

2. Mycobacterial Metabolization of Pynene in Humic Acid

Contaminants in the environment come in many forms, one of which
is the relatively recalcitrant toxic organic (carbon-based) family of
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Figure 9 During the 5-day study period, Arthrobocter ox!-dans bacteria (isolated from the
basalt core sample) attached themselves to magnetite surfaces. They reduced Cr(Vl) while
degrading toluene. SR-FTIR spectromicroscopy measurements at the end of the experiment
show the spatial distribution of (top) A. ox.vdans, (middle) chromate, and (bottom) toluene, as
measured by their spectral signatures (Holman et aL.,1999). (Reproduced with permission from
Geomicrobiol. J., 1999,16,307 324. Copyright 1999 Taylor & Francis.) (See Color lnserr.)

chemicals known as polycyclic aromatic hydrocarbons (PAHs). These
include more than 100 different chemicals resulting from incomplete
burning of coal, oil and gas, garbage, or other organic substances like
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Figure 10 Distribution of indigenous endolithic microorganisms (top) and the cr(III)
compounds (bottom) as measured by SR-FTIR spectromicroscopy at the end of the 4-month
cr(vl)-microbe basalt experiment. only chromium-tolerant and chromium-reducing mrcro-
organrsms proliferated during the study period (Holman et al., 1999). (Reproduced with
permission lrom Geomicrobiol. J., 1999, 16, 307.324. copyright 1999 Taylor & Francis.)
(See Color Insert.)

tobacco or grilled meat. converting pAHs into nontoxic chemicals
removes the hazard, but learning how to do this in an efficient and
cost-effective way remains to be accomplished. Here we made use of
synchrotron infrared spectromicroscopy to show that the speed of
biodegradation can be dramatically increased (by almost a tbo-tota;
by adding a certain soil-derived organic (humic) acid along with the
bacteria to a PAH spot on a mineral surface. (Holman ,t ot., zoozb\.

Cr(l l l )  compounds
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Figure 11 Confirmation of Cr (III) oxidation state by micro-X-ray analysis on the similar
area of the identical sample studied by SR-FTIR (see Fig. 5). (A) Chromium elemental mapping
by micro-X-ray fluorescence analysis (p-XRF). The colors go from black (chromium concentra-
tion below detection limit) to red (high chromium concentration). (B) Average of nine micro-
X-ray absorption fine structure (p-XAFS) scans taken at the highest concentration spot shows
no Cr(VI) preedge peak and is consistent with Cr(III) compounds. Each data point represents
20 s counting time. The energy increments are 0.5 eV (Holman et al., 1999). (Reproduced
with permission from Geomicrobiol. J.,1999,16,307-324. Copyright 1999 Taylor & Francis.)
(See Color Insert.)

The role of humic acid (HA) in the biodegradation of toxic PAHs has been
the subject of controversy, particularly in unsaturated environments. By
utilizing an IR Fourier transform spectromicroscope and a very bright,
nondestructive synchrotron photon source (SR-FTIR spectromicroscopy),
we monitored in situ and over time the influence of HA on the degradation of
pyrene (a model PAH) by a bacterial colony on a magnetite surface. Our
results indicate that HA dramatically shortens the onset time for PAH bio-
degradation from 168 Io 2 h. These results will have significant implications
for the bioremediation of contaminated soils.

The pyrene-degrading bacterium used for this study is Mycobacterium
sp. JLS (Fig. 12), a gram-positive, rod-shaped bacterium isolated from
PAH-contaminated soil at the Libby groundwater superfund site in Libby,
Montana, USA. Abiotic (no bacteria present) results (inserts in Fig. 13,{
and B) show that almost all of the pyrene remains on the mineral surface for
the duration of the study, owing to slow removal mechanisms. After intro-
duction of M. sp. JLS in the absence of HA, it took the bacteria about 168 h to
produce sufficient glycolipids to solubilize pyrene. At this point, bio-
degradation could proceed, resulting in a rapid decrease of pyrene and a
rapid increase of biomass within the next 35 h. After the pyrene was depleted,
the biomass signal significantly decreased, presumably as the M. sp. JLS
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Figure 12 A transmission electron microscopy (TEM) image of the newly isolated gram-
positive cocci Mycobacterium sp. JLS (GenBank accession no. AF387804). It appears that
M. sp. JLS degrades polycyclic aromatic hydrocarbons, such as pyrene via a novel pathway.
However, it gained biomass rapidly while degrading the compoun<ls (Holman et al., 2002b).
Time-resolved analysis of spectra from SR-FTIR spectromicroscopy did not reveal fingerprints
of known metabolites. This is further confirmed by follow-up mass spestrometry analysis of the
sample. (Figure courtesy of W. R. Sims.)

bacteria transformed themselves into ultramicrocells, a starvation-survival
strategy commonly observed among bacteria in oligotrophic environments.

In the presence of HA, pyrene biodegradation began within an hour, and
the pyrene was depleted by the end of the fourth hour, with a concurrent
increase of biomass (Fig. t3B). Both the degradation of pyrene and the
increase of biomass corroborate the effectiveness of Elliott soil humic acid
(ESHA) in radically accelerating biodegradation of pyrene. It is rikely that
the water-insoluble pyrene is solubilized into the cores of ESHA pseudomi-
celles and, therefore, becomes directly available for bacterial uptake and
consumption.

Over longer times, the remaining IR absorption bands of pyrene on
magnetite surfaces first showed a slight increase and subsequently a decrease.
The increase is probably due to diffusion of pyrene trapped in micropores
(<0.5 pm in diameter) of the magnetite andlor neighboring surfaces of
higher pyrene concentration after the first wave ofrapid depletion ofpyrene
by M. sp. JLS set up a diffusion gradient from the pyrene-containing
micropores toward the bacterial colony. For the surface containing HA,
the biomass remained almost constant over a period of more than 200 h,
indicating that the flux of pyrene from the micropores was sufficient to
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Figure 13 Time series of SR-FTIR absorption bands corresponding to pyrene and biomassformation following the degradation of pyrene by M. sp. JLS on magnetite surfaces. panels Aand B are lrom a sample lree of and with ESHA. The time at which each spectrum as acqurred islabeled They show the transient behavior ofpyrene doublet at 3044 and 3027 cm-1 and biomass
IR absorption bands at 2921 and 2g50 cm 1. similar behavior was observed rbr pyrene
absorption band centered at 1 185 cm-1. Inserts are time series from abiotic control expenmenrs(Holman et al., 2002b). (Reproduced with permission from Enyiron. sci. Tethnol., 2002, 36,1276-1280. Copyright 2002 Am. Chem. Soci.) (See Color Insert.)

maintain the bacterial colony. For the surface free of HA, there is little
evidence of the presence of a quasisteady state biomass (Fig. l4).

At the end of the time-resolved experiment (about a60 h);paiial distribu-
tions of pyrene, M. sp.JLS, and ESHA were measured by acquiring IR
spectra at 5-pm intervals across the center of the bacterial colonywith HA.
Figure l5 shows contour maps of the spatial distribution of mlasured IR
absorbance corresponding to M. sp. JLS, HA, and pyrene. The central
region of the maps has a high-population density of M.'sp. JLS and a high
concentration of HA, but the pyrene in this region was -ompletely biodi-graded. where pyrene is present without M.sp. JLS, there is no significant
degradation.

we conclude that SR-FTIR spectromicroscopy can assess real-time in-
teractions between multiple constituents in contaminated soils. combined
with conventional mineralization measurements, which monitor respira-
tion through carbon dioxide production, SR-FTIR spectromicroscopy is

3100 3000
Wavenumbers (cm
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Figure 14 Summary of the SR-FTIR results showing that pyrene degradation occurs
much faster when ESHA is present (note the log scale on the time axis). The pyrene absor-
bance was measured at  I  I85 cm-r and biomass IR absorpt ion band at  2921 cm--r .  The color
scheme is black for abiotic, green for biotic without ESHA, and red for biotic with ESHA. The
solid lines show the pyrene amount as a function of time for each experiment. The doned
lines show a subsequent increase in M. sp. JLS biomass after pyrene degradation (Holm an et al.,
2002b). (Reproduced with permission from Environ. sci. Technol., 2002. 36. r2i6 1290.
Copyright 2002 Am. Chem. Soci.) (See Color Insert.)

thus a powerful tool for evaluating bioremediation options and designing
bioremediation strategies for contaminated vadose zone environments.

3. Rapid Screening for Remediation Capability
of a Microbial Community

can infrared light from a synchrotron be used to screen for metabolic
activities in a living microbial community that can degrade organic
pollutants? If so, it would open up possibilities for the eventual use of
synchrotron infrared light in environmental diagnostics or environ-
mental health research. The experiment summarized here is an infrared
imaging of transformation of toluene by a microbial community on
vesicular basalt surfaces. Our preliminary results suggest that some day
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Figure 15 Contour diagrams lrom IR mapping obtained at the end of the experiment,
showing the spatial distribution ofthe IR absorption peaks corresponding to (top) M. sp. JLS
bacteria, (middle) ESHA, and (bottom) pyrene. Appropriate spectral regions were integrated for
each point on the maps. The color scales for each contour plot are red for high integrated IR
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concentration); black is an out-of-focus region of the sample. The center of the map shows a
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completelydegraded(Holman etal . ,2002b).Notethat thequal i tyof thespectra isexcel lenteven
on such complicated surfaces of earth materials (Arrows are pointing at some of marker peaks
employed in this study.) (Holman et a|.,2002b). (Reproduced with permission from Enyiron.
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it may be routine to study a tiny microbial colony, by using synchro-
tron infrared spectroscopy, and to screen for microbes and conditions
that are most effective in detoxifying environmental pollutants.
(Holman and Geller, 2005).

The possibility of utilizing the capability of intrinsic microorganisms to
decompose and even mineralize organic pollutants has stimulated intensive
interests in exploring if these biotransformation reactions actually take
place on surfaces of geologic materials. Conceptual and technological
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improvements in environmental microbiology have advanced our ability to
partly address these issues. For example, the use of the DNA probes for
specific enzymatic activities enables researchers to determine if certain genes
are present in the bulk microorganisms that can initiate and sustain the
desirable transformation of pollutants (Koenigsberg et al., 2005). Detection
of unique intermediate metabolites in site-derived samples provides evidence
for the occurrence of in situ contaminant biotransformation. Together with
microcosm experiments they globally address the questions of whether or
not the bacteria interact with contaminants. However, these efforts are labor
intensive and time-consuming. We are conducting a feasibility study to
evaluate if SR-FTIR spectromicroscopy can be an ideal screening tool to
rapidly identify microbial remedial capability on mineral surfaces.

The geological sample used was a fragment of a vesicular basalt rock from
a site formerly polluted with volatile organic compounds (VOCs). The
sample was exposed to 100 ppm of toluene vapor at 100,% relative humidity
for 5 days. Distinct and relevant IR absorption bands of toluene and its
metabolites from a common degradation pathway (Fig. 16) are used to mark
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Figure 16 The possible pathway for the metabolic degradation of toluene by the intrinsic
microbial communities in the earth materials. Due to matrix interference, we only tracked the
marker peaks for toluene, benzyl alcohol, benzoic acid, and catechol in this study (see Table II).
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the progression and capability of toluene degradation (Table II). At the end
of the fifth day, chemical images from SR-FTIR spectromicroscopy showed
that the native microorganisms were thriving in association with various
capabilities of toluene degradation (Fig. 17). This demonstrates that the
excellent spatial resolution of SR-FTIR spectromicroscopy provides a
means for determining the degree to which the toxic toluene was metabolized
by the microorganisms.
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Figure 17 Chemical images from SR-FTIR spectromicroscopy showed that the native
microorganisms were thriving during toluene degradation. Spectral images were rotated clock-
wise and tilted (relative to the bright-Iield micrograph) for clarity. A bright-field micrograph of
microbial colonies formed on the basalt surfaces after exposure to 100-ppm toluene vapor for
5 days (left top). The spatial distribution ofIR absorption peaks corresponding to (left bottom)
indigenous microorganisms, (right top) toluene, and the metabolites (right middle and bottom).
It appears that many native microbes metabolized nearly all the toluene immediately with some
accumulation of the nontoxic metabolites benzyl alcohol and catechol. No accumulation of
benzoic acid was detected. This implies that intrinsic microbial communities at the former
polluted site remained efficient in detoxifying toluene (unpublished data). (See Color Insert.)
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Table II
Spectral Regions and Distinct Absorption Bands Within Each Region for Microorganisms

(Including Bacteria), Toluene, Benzoic Acid, and Catechols in Basalt/I4icroorganism/Toluene
System (Holman and Geller, 2005)

Compounds Spectral regions (cm r) Absorption bands (cm-r)

Microorganisms (protein)
Toluene
Benzyl alcohol
Benzoic acid
Catechols

-1658;  -1548
-1029; -728; -695
-1200;  -1022
-930
-1096; -770; -742

IV. FUTIIRE POSSIBILITIES AND REQLIIREMENTS

Although SR-FTIR spectromicroscopy is an emerging analytical
and imaging technology for studying biogeochemical processes in vivo and
in situ, considerable experience has already been obtained in its use in
evaluating microbial interactions with environmental pollutants. It seems
as if only a small part of this noninvasive technology has been explored to
date. For example, the quantitative capability of IR spectroscopy for accu-
rately quantifying the transformation of metal ions or organic substrates,
for defining the interrelationship between such transformation and meta-
bolic activities, and even for measuring the chemical or activity gradient
and thus the chemical fluxes across a microbial colony have not been fully
utilized. Such utilities can be enhanced by a number of emerging or hoped-
for advances in other relevant technologies. Improved software for the
automated and accurate analysis of the spectra will make accurate quantita-
tion easier.

Improved experimental systems are also essential. To date, the major
experimental obstacles lie not in the synchrotron IR instruments themselves.
Instead, they lie in two difficulties: (l) in rapidly controlling the optimum
conditions for experiments before products of microbial functions are
measured, and (2) in optimizing immediate data processing and interpreta-
tion. The existing techniques are relatively time consuming and labor inten-
sive. Their fragility frequently results in major losses of sample and
experimental time, and they require many steps that can take days to achieve
the optimum experimental conditions.

Additionally, the future utility of the technique will also be enhanced by
combining SR-FTIR spectromicroscopy with other techniques of higher
specificity. For example, the most popular approach that is beneficial to

1 800- 1 500
12s0 650
I 250-650
1250 650
1250 700



S\NCHROTRON IR SPECTROMICROSCOPY

this combination appears to be the visible/IR imaging along with fluores-
cence microscopy. While visible imaging provides information on the physi-
cal features of the biogeochemical system and IR imaging yields global
chemical information of the system, fluorescence microscopy allows one to
observe localized environments (e.g., redox conditions, molecular cluster
dimensions) (Kilkenny et a1.,2002; Rocheleau et a1.,2002; Zhang et al.,
2002) and key-dynamical processes that govern the function and structure of
cells (Kahng and Shapiro,2003; Thanbichler et a1.,2005; Violl ier and
Shapiro, 2004; Viollier et al., 2002; Weijer, 2003). The fluorescent probes
can be endogenous molecules such as NAD(P)H (Latouche et al., 2000:
Piston and Knobel, 1999; Simon et al., 1996), genetically encoded specific
fluorescent proteins (Orser et al., 1995 Vandyk et al., 1995), or passive
markers of specific fluorescent molecules/dyes (Haugland, 2002). By estab-
lishing an associative analysis that links the genetically encoded molecules
and marked cellular events from fluorescence microscopy to the global
chemical information derived from SR-FTIR spectromicrosocpy, one can
truly expand the existing understanding of biogeochemical capabilities in
living microbes and developing biotechnologies for utllizing such capabilities
for the benefit of environmental manasement.
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